Em um triângulo retângulo qualquer, trace três quadrados adjacentes a cada um dos lados, tendo cada um deles o comprimento de um lado.
O quadrado referente ao maior dos dois catetos, divida ao meio, fazendo passar uma linha paralela à hipotenusa. Em seguida, divida-o novamente ao meio fazendo passar por seu centro uma linha perpendicular à hipotenusa. O resultado será um quadrado dividido em quatro trapézios irregulares.
Estes trapézios irregulares possuem dois lados que, unidos, tem o comprimento da hipotenusa. Portanto, é possível rearranjá-los de modo a se encaixarem no quadrado ao lado da hipotenusa.
Este quadrado, assim formado, cujos lados tem o comprimento da hipotenusa, resultará na formação de um quadrado menor em seu inteiror, cujo lado será igual ao lado do quadrado criado no menor dos catetos (b = a - c).
Portanto, o quadrado da hipotenusa tem área (a hipotenusa ao quadrado) igual à soma do quadrado do cateto menor mais o quadrado do cateto maior (as áreas dos 4 trapézios formados se igualam à área do quadrado do cateto maior).
Catetos: a e b
Hipotenusa: c
O Teorema diz que: “a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.”
a² + b² = c²
Referências Bibliográficas
- http://www.exatas.com/matematica/pitagoras.html
- http://www.brasilescola.com/matematica/teorema-pitagoras.htm
- http://www.suapesquisa.com/pesquisa/pitagoras.htm
Nenhum comentário:
Postar um comentário